
Google: Adrian Horzyk
Adrian Horzyk

horzyk@agh.edu.pl

AGH University of Science and Technology
Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering

Department of Biocybernetics and Biomedical Engineering

mailto:horzyk@pwsz.krosno.pl
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

2

http://home.agh.edu.pl/~horzyk/index-eng.php

Activation Functions of Neurons

We use different activation functions for neurons in different layers:

COMPARISON OF ACTIVATION FUNCTIONS

• Sigmoid function is used
in the output layer:

𝒈 𝒛 = 𝝈 𝒛 =
𝟏

𝟏+𝒆−𝒛

• Tangent hyperbolic function
is used in hidden layers:

𝒈 𝒛 = 𝒕𝒂𝒏𝒉 𝒛 =
𝒆𝒛−𝒆−𝒛

𝒆𝒛+𝒆−𝒛

• Rectified linear unit (ReLU)
is used in hidden layers (FAST!):
𝒈 𝒛 = 𝑹𝒆𝑳𝒖 𝒛 = 𝒎𝒂𝒙 𝟎, 𝒛

• Smooth ReLu (SoftPlus)
is used in hidden layers:
𝒈 𝒛 = 𝑺𝒐𝒇𝒕𝑷𝒍𝒖𝒔 𝒛 = 𝒍𝒐𝒈 𝟏 + 𝒆𝒛

• Leaky ReLu is used in hidden layers:

𝒈 𝒛 = 𝑳𝒆𝒂𝒌𝒚𝑹𝒆𝑳𝒖 𝒛 = ቊ
𝒛 𝒊𝒇 𝒛 > 𝟎
𝟎. 𝟎𝟏𝒛 𝒊𝒇 𝒛 ≤ 𝟎

3

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Activation Functions of Neurons

The most popular activation functions are defined as follows:

4

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Activation Functions of Neurons

Optimizing our model performance, we should try to use various activation
functions because scientific papers and various experiments show that the
change of activation functions substantially improve accuracy and decrease loss:

You can try to improve your model trained on the CIFAR-10 dataset changing
activation functions of neurons as presented in the above chart.

Two the most efficient activation functions for CIFAR-10 are:
• ELU (exponential linear unit):

• SERLU (scaled exponentially regularized linear unit).

5

https://developpaper.com/a-complete-guide-to-activation-functions-in-deep-learning-a-modern-journey-through-many-curves-of-data-science/
https://github.com/BindiChen/machine-learning/blob/master/tensorflow2/010-popular-activation-functions/popular-activation-functions.ipynb
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

SoftMax Activation Function

The SoftMax activation function (normalized exponential function) is used
in the last layer of multinominal logistic regression or multi-class classification problems:

In the SoftMax layer, the activation function 𝒈 𝑳 is defined as: ෝ𝒂 𝑳 = 𝒈 𝑳 𝒛 𝑳 = 𝒆𝒛
𝑳

Specifically for each output neuron: ෝ𝒂𝒋
𝑳
= 𝒈 𝑳 𝒛𝒋

𝑳
= 𝒆

𝒛𝒋
𝑳

We use the sum of all output values of the activation functions ෝ𝒂𝒋
𝑳

𝒆𝒔𝒖𝒎 = 𝒂𝒋
𝑳
=

ෝ𝒂𝒋
𝑳

σ𝒋=𝟏
𝒏[𝑳] ෝ𝒂𝒋

𝑳

to compute the final output values of the output SoftMax nodes as normalized by this sum:

𝒂𝒋
𝑳
=

ෝ𝒂𝒋
𝑳

𝒆𝒔𝒖𝒎
= 𝒂𝒋

𝑳
=

ෝ𝒂𝒋
𝑳

σ𝒋=𝟏
𝒏[𝑳] ෝ𝒂𝒋

𝑳

Thanks to this approach, the sum of all output values always sums up to 1, and the output values can be
used to emphasise the probabilities of classifications to all trained classes, pointing to the winner, e.g.:

𝒊𝒇 𝒛 𝑳 =

𝟐
𝟓
−𝟏
𝟑

𝒕𝒉𝒆𝒏 ෝ𝒂 𝑳 =

𝒆𝟐

𝒆𝟓

𝒆−𝟏

𝒆𝟑

=

𝟕. 𝟑𝟗
𝟏𝟒𝟖. 𝟒𝟏
𝟎. 𝟑𝟕
𝟐𝟎. 𝟎𝟗

𝒆𝒔𝒖𝒎 = 𝟕. 𝟑𝟗 + 𝟏𝟒𝟖. 𝟒𝟏 + 𝟎. 𝟑𝟕 + 𝟐𝟎. 𝟎𝟗 = 𝟏𝟕𝟔. 𝟐𝟔 𝒕𝒉𝒆𝒏 𝒂 𝑳 =

𝟕. 𝟑𝟗/𝒆𝒔𝒖𝒎
𝟏𝟒𝟖. 𝟒𝟏/𝒆𝒔𝒖𝒎
𝟎. 𝟑𝟕/𝒆𝒔𝒖𝒎
𝟐𝟎. 𝟎𝟗/𝒆𝒔𝒖𝒎

=

𝟎. 𝟎𝟒𝟐
𝟎. 𝟖𝟒𝟐
𝟎. 𝟎𝟎𝟐
𝟎. 𝟏𝟏𝟒

As we can notice, σ𝒋=𝟏
𝒏[𝒍] 𝒂𝒋

𝑳
= 𝟏, in our case 𝟎. 𝟎𝟒𝟐 + 𝟎. 𝟖𝟒𝟐 + 𝟎. 𝟎𝟎𝟐 + 𝟎. 𝟏𝟏𝟒 = 𝟏. 𝟎

6

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

SoftMax Loss Function

When using SoftMax in the output layer, the loss function is defined as:

𝑳 ෝ𝒚𝒋, 𝒚𝒋 = −

𝒋=𝟏

𝒏 𝑳

𝒚𝒋 𝒍𝒐𝒈 ෝ𝒚𝒋 = −𝒚𝒄 𝒍𝒐𝒈 ෝ𝒚𝒄 = −𝒍𝒐𝒈 ෝ𝒚𝒄

because only for 𝒋 = 𝒄 it is true that 𝒚𝒄 ≠ 𝟎, i.e. for the class it defines, and 𝒚𝒄 = 𝟏:

𝒚 =

𝟎
𝟏
𝟎
𝟎

Therefore, the loss function can be minimized, when the ෝ𝒚𝒄 is maximised, i.e. tends to be
close to 1:

ෝ𝒚 = 𝒂 𝑳 =

𝟎. 𝟐
𝟎. 𝟒
𝟎. 𝟑
𝟎. 𝟏

So the goal of the training is intuitively fulfilled.

Then, the backpropagation step is started from:

𝒅𝒛 𝑳 = ෝ𝒚 − 𝒚

7

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

SoftMax with Logistic Regression

In the SoftMax layer, we can also use another activation function 𝒈 𝑳 to compute outputs values

ෝ𝒂 𝑳 , e.g. if the activation function 𝒈 𝑳 would be a logistic function, then we got ෝ𝒂𝒋
𝑳
∈ 𝟎, 𝟏 , e.g.

for the four trained classes, we get the output ෝ𝒂 𝑳 that is normalized to 𝒂 𝑳 :

(a) We have two initial high estimations of the logistic functions 0.98 and 0.92:

ෝ𝒂 𝑳 =

𝟎. 𝟎𝟔
𝟎. 𝟗𝟖
𝟎. 𝟎𝟒
𝟎. 𝟗𝟐

𝒔𝒖𝒎 = 𝟎. 𝟎𝟔 + 𝟎. 𝟗𝟖 + 𝟎. 𝟎𝟒 + 𝟎. 𝟗𝟐 = 𝟐. 𝟎 𝒂 𝑳 =

𝟎. 𝟎𝟔/𝒔𝒖𝒎
𝟎. 𝟗𝟖/𝒔𝒖𝒎
𝟎. 𝟎𝟒/𝒔𝒖𝒎
𝟎. 𝟗𝟐/𝒔𝒖𝒎

=

𝟎. 𝟎𝟑
𝟎. 𝟒𝟗
𝟎. 𝟎𝟐
𝟎. 𝟒𝟏

In this case, we got two quite high estimations of the logistic functions 0.98 and 0.92, but the final
multi-class classification is not so high because the network is not sure which of these two highly
approximated classes should the input belong to?! The result shows this hesitation: 0.49 and 0.41.

The highest output value of the soft-max layer neurons is treated as the winning one and the most
probable classification over the trained classes, but we also should take into account the final
highest values that reduce the confidence of the answers given by the network!

Consider another classification result that gives only one initial high estimation 0.88 for class 2 that
is lower than 0.98. Which of these two classifications should we trust more (a) or (b) and why?

(b) We have only one initial high estimation 0.88 but it is lower than 0.98:

ෝ𝒂 𝑳 =

𝟎. 𝟏𝟒
𝟎. 𝟖𝟖
𝟎. 𝟏𝟐
𝟎. 𝟎𝟔

𝒔𝒖𝒎 = 𝟎. 𝟏𝟒 + 𝟎. 𝟖𝟖 + 𝟎. 𝟏𝟐 + 𝟎. 𝟎𝟔 = 𝟏. 𝟐 𝒂 𝑳 =

𝟎. 𝟏𝟒/𝒔𝒖𝒎
𝟎. 𝟖𝟖/𝒔𝒖𝒎
𝟎. 𝟏𝟐/𝒔𝒖𝒎
𝟎. 𝟎𝟔/𝒔𝒖𝒎

=

𝟎. 𝟏𝟐
𝟎. 𝟕𝟑
𝟎. 𝟏𝟎
𝟎. 𝟎𝟓

8

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Possible results got by SoftMax

Consider the trustworthy of the following example results got by
the flat SoftMax neural network using various numbers of trained classes:

Can we trust such results or should we use deeper architecture to
classify inputs with higher confidence?

9

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

SoftMax Regression

SoftMax regression is a generalization of logistic regression for a multi-class classification:

• It can be used together with different neural network architectures.

• It is used in the last network layer (L-layer) to proceed a multi-class classification.

• Multi-class classification is when our dataset defines more than 2 classes,
and the network answers should be not only yes or no.

• For each trained class (because there might be more classes in the dataset than
the trained number of classes, but they are not labelled for supervised training),
we create a single output neuron that should give us the probability of the recognized
class of the input data. Hence, for all trained classes, we get the output vector ෝ𝒚 that
defines the probabilities of classification of the input 𝑿 to one of the trained classes.

• SoftMax layer exponentially normalizes the final outputs 𝒂 𝑳 of all neurons of

this layer by the sum of the computed outputs ෝ𝒂 𝑳 of the activation function
used in this layer.

10

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

11

http://home.agh.edu.pl/~horzyk/index-eng.php

Exponentially Weighted Averages

Exponentially Weighted (Moving) Averages is another much faster optimization
algorithm than Gradient Descent:

• We compute weighted averages after
the following formula:

• 𝒗𝟎 = 𝟎

• 𝒗𝒕 = 𝜷 ∙ 𝒗𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕

where 𝜷 controls the number or previous

steps that control the current value 𝒗𝒕 :

• 𝜷𝒓𝒆𝒅 = 𝟎. 𝟗 (adapts taking into account 10 days)

• 𝜷𝒈𝒓𝒆𝒆𝒏 = 𝟎. 𝟗𝟖 (adapts slowly in view of 50 days)

• 𝜷𝒚𝒆𝒍𝒍𝒐𝒘 = 𝟎. 𝟓 (adapts quickly averaging 2 days)

• 𝜽𝒕 - is a currently measured value (temperature)

We can use this approach for optimization
in deep neural networks.

12

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

COVID Trend Smoothing

Exponentially Weighted Averages are used on the web page for calculating
the 7-day moving averages of COVID daily new cases and daily deaths:

13

https://www.worldometers.info/coronavirus/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Exponentially Weighted Averages

Why we call this algorithm Exponentially Weighted Averages:
When we substitute and develop the formula:

𝒗𝟎 = 𝟎
𝒗𝒕 = 𝜷 ∙ 𝒗𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕

we get the following:

𝒗𝒕 = 𝜷 ∙ 𝒗𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕 = 𝜷 ∙ 𝜷 ∙ 𝒗𝒕−𝟐 + 𝟏 − 𝜷 ∙ 𝜽𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕 =
= 𝜷 ∙ 𝜷 ∙ 𝜷 ∙ 𝒗𝒕−𝟑 + 𝟏 − 𝜷 ∙ 𝜽𝒕−𝟐 + 𝟏 − 𝜷 ∙ 𝜽𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕 =

= 𝟏 − 𝜷 𝜷𝟎 ∙ 𝜽𝒕 + 𝜷𝟏 ∙ 𝜽𝒕−𝟏 + 𝜷𝟐 ∙ 𝜽𝒕−𝟐 + 𝜷𝟑 ∙ 𝜽𝒕−𝟑 + 𝜷𝟒 ∙ 𝜽𝒕−𝟒 +⋯

and when we now substitute 𝛽 = 0.9 we get the weighted average by

the exponents of the β value:

𝒗𝒕 = 𝟏 − 𝟎. 𝟗 𝜽𝒕 + 𝟎. 𝟗 ∙ 𝜽𝒕−𝟏 + 𝟎. 𝟗𝟐 ∙ 𝜽𝒕−𝟐 + 𝟎. 𝟗𝟑 ∙ 𝜽𝒕−𝟑 + 𝟎. 𝟗𝟒 ∙ 𝜽𝒕−𝟒 +⋯ =

=
𝜽𝒕 + 𝟎. 𝟗 ∙ 𝜽𝒕−𝟏 + 𝟎. 𝟗𝟐 ∙ 𝜽𝒕−𝟐 + 𝟎. 𝟗𝟑 ∙ 𝜽𝒕−𝟑 + 𝟎. 𝟗𝟒 ∙ 𝜽𝒕−𝟒 +⋯

𝟏𝟎

14

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Bias Correction for

Exponentially Weighted Averages

When we start with the Exponential Weighted Averages, we are too much influenced by
the 𝒗𝟎 = 𝟎 value (violet curve):

𝒗𝟎 = 𝟎 & 𝜷 = 𝟎. 𝟗𝟖

𝒗𝟏 = 𝟎. 𝟗𝟖 ∙ 𝒗𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏 = 𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏 ≪ 𝜽𝟏
𝒗𝟐 = 𝟎. 𝟗𝟖 ∙ 𝟎. 𝟗𝟖 ∙ 𝒗𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟐 = 𝟎. 𝟎𝟏𝟗𝟔 ∙ 𝜽𝟏 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟐

≪
𝜽𝟏 + 𝜽𝟐

𝟐
To avoid this, we use the correction factor (green curve) 𝟏 − 𝜷𝒕:

𝒗𝒕 =
𝜷 ∙ 𝒗𝒕−𝟏 + 𝟏 − 𝜷 ∙ 𝜽𝒕

𝟏 − 𝜷𝒕

𝒗𝟏 =
𝟎. 𝟗𝟖 ∙ 𝒗𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏

𝟏 − 𝟎. 𝟗𝟖
=
𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏

𝟎. 𝟎𝟐
= 𝜽𝟏

𝒗𝟐 =
𝟎. 𝟗𝟖 ∙ 𝟎. 𝟗𝟖 ∙ 𝒗𝟎 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟏 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟐

𝟏 − 𝟎. 𝟗𝟖𝟐
=
𝟎. 𝟎𝟏𝟗𝟔 ∙ 𝜽𝟏 + 𝟎. 𝟎𝟐 ∙ 𝜽𝟐

𝟎. 𝟎𝟑𝟗𝟔
≈
𝜽𝟏 + 𝜽𝟐

𝟐

Thanks to this bias correction, we do not follow
the violet curve but the green (corrected) one:

15

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Gradient Descent with Momentum

Gradient Descent with Momentum:
• Uses exponentially weighted averages of the gradients.

• Slows down oscillations that cancel each other out when the gradients differ
in the consecutive steps.

• Accelerates the convergence steps like a ball rolling in a bowl
if the gradients are similar in the consecutive steps.

• 𝑾≔𝑾−𝜶 ∙ 𝒗𝒅𝒘

• 𝒃 ≔ 𝒃 − 𝜶 ∙ 𝒗𝒅𝒃

• 𝒗𝒅𝑾 ≔ 𝜷 ∙ 𝒗𝒅𝑾 + 𝟏 − 𝜷 ∙ 𝒅𝑾

• 𝒗𝒅𝒃 ≔ 𝜷 ∙ 𝒗𝒅𝒃 + 𝟏 − 𝜷 ∙ 𝒅𝒃
friction velocity acceleration

• The quotient 𝟏 − 𝜷 is often omitted:

• 𝒗𝒅𝑾 ≔ 𝜷 ∙ 𝒗𝒅𝑾 + 𝒅𝑾

• 𝒗𝒅𝒃 ≔ 𝜷 ∙ 𝒗𝒅𝒃 + 𝒅𝒃

• Hyperparameters: 𝜶, 𝜷, typical values of coefficients: 𝜶 = 𝟎. 𝟏, 𝜷 = 𝟎. 𝟗

• Bias correction is rarely used with momentum, however might be used.

. 16

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Gradient Descent with Momentum

Gradient Descent with Momentum:

• uses exponentially weighted averages of the gradients

• slows down oscillations that cancel each other out
when the gradients differ in the consecutive steps.

• accelerates the convergence steps like a ball rolling in a bowl
if the gradients are similar in the consecutive steps.

17

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Root Mean Square Propagation

Root Mean Square Propagation (RMSprop):
• Computes the exponentially weighted average of the squares of the derivatives

• 𝒔𝒅𝑾 ≔ 𝜷 ∙ 𝒔𝒅𝑾 + 𝟏 − 𝜷 ∙ 𝒅𝑾𝟐 where 𝒅𝑾𝟐 is element-wise

• 𝒔𝒅𝒃 ≔ 𝜷 ∙ 𝒔𝒅𝒃 + 𝟏 − 𝜷 ∙ 𝒅𝒃𝟐 where 𝒅𝒃𝟐 is element-wise

• Parameters are updated in the following way:

• 𝑾≔𝑾−𝜶 ∙
𝒅𝑾

𝒔𝒅𝑾
𝒃 ≔ 𝒃 − 𝜶 ∙

𝒅𝒃

𝒔𝒅𝒃

• Where 𝒔𝒅𝑾 and 𝒔𝒅𝒃 balance the convergence process independently of how big or how small

are 𝒅𝑾, 𝒅𝒃, 𝒔𝒅𝑾, and 𝒔𝒅𝒃.

• optimizers.RMSprop(

learning_rate=0.001,

rho=0.9,

momentum=0.0,

epsilon=1e-07,

centered=False,

name="RMSprop",

**kwargs)

18

https://keras.io/api/optimizers/rmsprop/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Adam Optimization Algorithm

Adam optimizer puts momentum and RMSprop together:
• Initialize Hyperparameters:

𝜶 – needs to be tuned

𝜷𝟏 = 0.9 (typical, default)

𝜷𝟐 = 0.999 (typical , default)

𝜺 = 𝟏𝟎−𝟖 (typical , default)

• Initialize: 𝒗𝒅𝑾 ≔ 𝟎; 𝒗𝒅𝒃 ≔ 𝟎; 𝒔𝒅𝑾 ≔ 𝟎; 𝒔𝒅𝒃 ≔ 𝟎

• Loop for t iterations over the mini-batches of the training epoch:

• Compute gradients 𝒅𝑾 and 𝒅𝒃 for current mini-batches.

• Compute correction parameters with corrections and final parameter updates:

𝒗𝒅𝑾
𝒄𝒐𝒓𝒓 ≔

𝜷𝟏∙𝒗𝒅𝑾+ 𝟏−𝜷𝟏 ∙𝒅𝑾

𝟏−𝜷𝟏
𝒕 𝒗𝒅𝒃

𝒄𝒐𝒓𝒓 ≔
𝜷𝟏∙𝒗𝒅𝒃+ 𝟏−𝜷𝟏 ∙𝒅𝒃

𝟏−𝜷𝟏
𝒕

𝒔𝒅𝑾
𝒄𝒐𝒓𝒓 ≔

𝜷𝟐∙𝒔𝒅𝑾+ 𝟏−𝜷𝟐 ∙𝒅𝑾𝟐

𝟏−𝜷𝟐
𝒕 𝒔𝒅𝒃

𝒄𝒐𝒓𝒓 ≔
𝜷𝟐∙𝒔𝒅𝒃+ 𝟏−𝜷𝟐 ∙𝒅𝒃𝟐

𝟏−𝜷𝟐
𝒕

𝑾≔𝑾−𝜶 ∙
𝒗𝒅𝑾
𝒄𝒐𝒓𝒓

𝒔𝒅𝑾
𝒄𝒐𝒓𝒓+𝜺

𝒃 ≔ 𝒃 − 𝜶 ∙
𝒗𝒅𝒃
𝒄𝒐𝒓𝒓

𝒔𝒅𝒃
𝒄𝒐𝒓𝒓+𝜺

.

19

optimizers.Adam(

lr=0.001,

beta_1=0.9,

beta_2=0.999,

epsilon=1e-07,

amsgrad=False,

name="Adam")

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
https://keras.io/api/optimizers/adam/

AdaGrad Optimization

Adaptive gradient descent (AdaGrad) decays the learning rate, but it does so
faster for steep dimensions than for dimensions with gentler slopes.

AdaGrad frequently performs well
for simple quadratic problems,
but it often stops too early
when training neural networks.

20

optimizers.Adagrad(

learning_rate=0.001,

initial_accumulator_value=0.1,

epsilon=1e-07,

name="Adagrad",

**kwargs)

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php
https://keras.io/api/optimizers/adagrad/

Optimizers

Today, we have many different optimizers, which we can use to fit
our models. They can speed up the training process or allow for
the easier escape of the local minima or saddle points:

• Nesterov accelerated gradient

• Momentum

• RMSprop

• Adam

• Adagrad

• Adadelta

• AdaMax

• Nadam

• AMSGrad

21

https://ruder.io/optimizing-gradient-descent/index.html
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

22

http://home.agh.edu.pl/~horzyk/index-eng.php

Transfer Learning

Transfer learning is a common and highly effective approach to deep learning on
small image datasets using a pre-trained network that is simply a saved network
previously trained on a large dataset, typically on a large-scale image
classification task.

If this large dataset is general enough (sufficiently covers input data space),
then the spatial feature hierarchy learned by the pre-trained network
can effectively act as a generic model of our visual world.

Hence, its features can prove useful for many different computer vision
problems, even though these problems might involve completely different
classes from those of the task for which the original network was trained.

For instance, one might train a network on ImageNet and then re-purpose
this trained network for identifying, e.g., furniture items or animals in images.

Such portability of learned features across different problems is a key advantage
of deep learning compared to many older shallow learning approaches,
and it makes deep learning very effective for small-data problems.

There are two ways to use a pre-trained network:
feature extraction and fine-tuning. 23

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Transfer Convolutional Base

We usually use well-trained convolutional bases of the previously-trained
networks, which extract various hierarchy features ()

and adapt them to new (e.g. classification) tasks creating better models
faster.

24

Trained
Convolutional

Base

Input Data

Original
Predictions

Trained
Classifier

Trained
Convolutional

Base

Input Data

Original
Predictions

Trained
Classifier

Trained
Convolutional
Base (frozen)

Input Data

New
Predictions

New
Classifier

Feature Extractor

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Transfer Learning using VGG-16

with the frozen and fine-tuned layers

We can use selected number of the frozen convolutional layers (Blocks 1 – 4,
disallowing changes of parameters) and fine-tune the unfrozen convolutional
layers (Block 5) together with the Dense classifier layers in the training process:

This approach allows the classifier to preserve the most generic convolutional
layers representing the most general lower-order features and adapt the more
specific and higher-order convolutional features represented by the top filters
which will better respond to a new classification task.

To fine-tune the higher-order filters, we first need to train the classifier, and
when it is already quite well-trained, then unfreeze a few top convolutional
layers (e.g. in Block 5) and next continue training with a small learning rate

to limit the magnitude of the modifications that will be made in Block 5.
25

Classifier

fine-tune

Block 1

frozen

In
p

u
t D

ata

P
re

d
ictio

n

C
o

n
v2

D

M
axP

o
o

l2
D

C
o

n
v2

D

Block 2

frozen

C
o

n
v2

D

M
axP

o
o

l2
D

C
o

n
v2

D

Block 3

frozen

C
o

n
v2

D

M
axP

o
o

l2
D

C
o

n
v2

D

C
o

n
v2

D

Block 4

frozen

C
o

n
v2

D

M
axP

o
o

l2
D

C
o

n
v2

D

C
o

n
v2

D

Block 5

fine-tune

C
o

n
v2

D

M
axP

o
o

l2
D

C
o

n
v2

D

C
o

n
v2

D

Flatten

D
en

se

D
en

se

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Transfer Learning

When working with transferred models, we have to:

1. Upload the transferred model or import it from the library:

2. We have to freeze the convolutional base to prevent its changes before we
start training the randomly initialized classifier:

3. Next, we add the frozen convolutional base to the model:

26

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Fine-tuning Steps

Steps for fine-tuning a network are as follow:

1. Add your custom network (e.g., a dense classifier) on top of
an already trained network base (conv_base).

2. Freeze the base network.

3. Train the part (e.g. classifier) you added on top.

4. Unfreeze last layers (a block of layers) in the network base.

5. Jointly train both these unfrozen layers and the part you added.

6. While the results are not yet satisfactory and reprezented
features in the last layers do not suite to our problem:

1. Unfreeze a few additional last layers (the next block) in the network base.

2. Jointly train both these unfrozen layers and the part you added.

27

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Freezing and Unfreezing Layers

When we want to fine-tune the network, we must unfreeze some convolutional
layers. However, we should consider that:

• Earlier layers in the convolutional base encode more generic, reusable
features, while layers higher up encode more specialized features.
It is more useful to fine-tune the more specialized features, as these are the
ones that need to be repurposed on our new problem.
There would be fast-decreasing returns in fine-tuning lower layers.

• The more parameters we are training, the more we are at risk of overfitting.
In our case, the convolutional base has usually over millions of parameters,
so it would be risky to attempt to train it on a small dataset.

28

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

29

http://home.agh.edu.pl/~horzyk/index-eng.php

Performance and Final Tips & Tricks

When training DNN we usually struggle with the improvement of
hyperparameters, structures and training models to achieve better
training speed and final performance. We can try (some ideas):
• Collect more training data (and label them for supervised training).

• Diversify training data to represent a computational task better (in a different way).

• Use different network architectures and different numbers of layers and neurons.

• Use different activation functions and different sequences of various layers.

• Experiment with various hyperparameters and try different combinations of them.

• Use regularization, dropout, optimization methods (e.g. Adam optimizer).

• Train a chosen network longer with different or changing learning rates.

• Compare results achieved for various architectures and the other hyperparameters.

How to quickly and smarter choose between various training strategies?

We always have limited resources (time and computational power) to solve
a given problem and must cut costs in the commercial implementations!

30

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

How to implement Dropout?

The original paper on Dropout provides experimental results
which provide a number of useful heuristics to consider
when using dropout in practice:
• Use a small dropout value of 0.2 – 0.5 of neurons with 0.2 providing a good starting

point, however, for small networks or small layers 0.1 might be the right value.
Too low probability has minimal effect on the model,
and when it is too high, it results in underfitting by the network.

• Use a larger network to give the model more of an opportunity to learn independent
representations.

• Use dropout on incoming (visible) as well as hidden units (layers).
Application of dropout at each layer of the network has shown good results.

• Use a large learning rate with decay and a large momentum, increasing your learning
rate by a factor of 10 to 100 and use a high momentum value of 0.9 or 0.99.

• Constrain the size of network weights. A large learning rate can result in very large
network weights. Imposing a constraint on the size of network weights such as
max-norm regularization with a size of 4 or 5 has been shown to improve results.

31

https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Problems with many Outliers

• Outliers are data that do not match the data model represented by other data.

• Outliers often fall out outside the range of variation of other data for one or more
attributes.

• Outliers are responsible for the rise of bias and variance, especially when there are
many of them! However, normally, models deal with a small number of outliers!

• Sometimes outliers are unusual combinations of common data,
which are within the limits of the variation of individual attributes,
but this variation is so strange that it is not compatible with the other combinations,
e.g., for classification problems.

• Outliers may arise as a result of errors, anomalies (e.g., in measurement),
or specific (sometimes interesting) phenomena.

• There is no strict mathematical definition of outliers, as they usually depend on
the nature of the data and the subjective assessment.

• Outliers are usually removed or replaced with zero, average, median, ...

• The median is quite robust to data outliers, but the average is not.

• It uses a Vinsor’s average in which selected extreme observations are replaced by
the minimum and maximum values from the remaining data, respectively.

32

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Error Analysis and Overgoing Troubles

When you train the network, trying to implement various tips and tricks, but you are still
unsatisfied of the achieved results, you can try to analyse results, e.g., incorrectly classified
examples, and overgo these troubles implementing special routines into them:
• Check to which classes belong incorrectly classified examples? Are they of one or more classes?

Do one class patterns prevail in them or not? If yes, consider using strengthening factor.
• Focus your effort on the most numerous incorrectly classified examples of one class

because it can help you to decrease the error the most (ceiling) if you succeed.
• Are trained classes represented evenly in the training set? If not, try to balance the size of all classes, e.g.

using augmentation to the less numerous classes or to reduce unevenly the learning rates implemented to
various classes taking into account the numbers of examples which represent them.

• You can try to strengthen the training process for the incorrectly classified examples, e.g. use different
strengthening factors for the training examples that are difficult to train.

• Check what the neurons of the network represent and whether the classification is not based on
the object surrounding instead of the classified object self.

• Finally, try to find out all possible categories of errors and count up their occurrences:

• Use different knobs to fit a training, validation (dev) and testing sets and to real data final check.

33

Example Too big Blurry Mislabeled Cars Data Distribution 1 Weak representation of this class Comments

1

2

…

% of total: 15% 42% 18% 32% 12% 18%

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

Cleaning and Correcting Mislabeled Data

Deep learning algorithms are usually robust, so the random errors and
mislabeled training data should not spoil much the training process,
but if there is a lot of incorrectly labeled data, they should be corrected:

• How to correct the training set when it consists of thousands/millions of examples?

• If the number of mislabeled examples is not too big (> 10%), we can try to learn
the model using all correctly and incorrectly labeled examples, then filter out
all misclassified examples and correct or remove those which are mislabeled;
next, continue or start the training process from scratch again and again until
we correct enough mislabeled data and achieve satisfying results of training the model.

• We can also use unsupervised training method to cluster training data,
next, in each cluster, filter out all differently labeled examples to the most numerous
class(es) represented be each cluster, and correct the mislabeled examples.

• If training data contain blurry or misleading examples, we can also remove them from
the training set (cleaning it). Such examples are removed during the error analysis of
the filtered out incorrectly classified examples. After removing of such examples,
we start the training process again and again until we remove enough poor-quality
examples and achieve satisfying results of training the model.

34

http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

http://home.agh.edu.pl/~horzyk/lectures/ahdydkbcidmb.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
file:///C:/Users/Adrian/Downloads/bmm615.pdf
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/lectures/ahdydkbcidmb.php
file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
http://home.agh.edu.pl/~horzyk/index-eng.php
http://home.agh.edu.pl/~horzyk/index-eng.php

